With support from the University of Richmond

History News Network puts current events into historical perspective. Subscribe to our newsletter for new perspectives on the ways history continues to resonate in the present. Explore our archive of thousands of original op-eds and curated stories from around the web. Join us to learn more about the past, now.

Rewiring of Gene Regulation Across 300 Million Years of Evolution

Researchers from Cambridge, Glasgow and Greece have discovered a remarkable amount of plasticity in how transcription factors, the proteins that bind to DNA to control the activation of genes, maintain their function over large evolutionary distances.

The text books tell us that transcription factors recognise the genes that they regulate by binding to short, sequence-specific lengths of DNA upstream or downstream of their target genes. It was widely assumed that, like the sequences of the genes themselves, these transcription factor binding sites would be highly conserved throughout evolution. However, this turns out not to be the case in mammals.

Reporting in the journal Science, the authors traced the evolution of gene regulation by comparing the binding of evolutionarily conserved transcription factors in the genomes of five vertebrate species -- human, dog, mouse, short-tailed opossum and chicken -- spanning 300 million years.
Read entire article at Science Daily